...

19. Nitrogen compounds

Written by: Pranav I
Formatted by: Pranav I

Index

19.1 Primary amines

  • Reagent: NH3
  • Conditions: heat under pressure, and ethanol
  • Primary amine formed
  • If the ammonia is not in excess, a mixture of amines will be formed → primary amines will act as nucleophiles and attack haloalkanes to form secondary amines

\[
\text{C}_2\text{H}_5\text{Br} + \text{NH}_3 \rightarrow \text{C}_2\text{H}_5\text{NH}_2 + \text{HBr} \, (\textit{excess } \text{NH}_3)
\]

\[
2\text{C}_2\text{H}_5\text{Br} + \text{NH}_3 \rightarrow (\text{C}_2\text{H}_5)_2\text{NH} + 2\text{HBr} \, (\textit{without excess } \text{NH}_3)
\]

19.2 Nitriles and hydroxynitriles

Substitution with cyanide ions, CN- (in ethanol)

  • Reagent: NaCN
  • Conditions: heat under reflux, and ethanol
  • Adds an extra carbon atom to the compound (original haloalkane carbon chain)

\[
\text{C}_2\text{H}_5\text{Br} + \text{CN}^- \rightarrow \text{C}_2\text{H}_5\text{CN} + \text{Br}^-
\]

Nucleophilic addition with HCN

  • Addition takes place across the C=O bond → attacked by a nucleophile
  • HCN is generated in situ by the reaction of KCN and dilute H2SO4
  • Nitrile group addedincrease in the number of C in the original carbonyl compound

\[
\text{CH}_3\text{CH}_2\text{CHO} + \text{HCN} \rightarrow{\text{CN}^-} \text{CH}_3\text{CH}_2\text{CH(OH)CN}
\]

Mechanism of nucleophilic addition

Fig 17.1 Marking scheme snippet of the nucleophilic addition mechanism
  • >C=O is polarised → high electronegativity of the oxygen atom 
    • C has δ+ and O has δ-
    • Open to attack by a nucleophile
  • Step 1
    • CN nucleophile attacks the δ+ C atom 
    • One bond in C=O breaks heterolytically
    • O gains a negative charge
  • Step 2
    • Lone pair of electrons from O attacks H+
    • This forms a hydroxy group

Hydrolysis of nitrles

  • Nitrile group (-C≡N) can be hydrolyzed to a carboxylic acid
  • Reagent: HCl
  • Conditions: dilute & heat under reflux 

\[
\text{CH}_3\text{CH}_2\text{CN} + 2\text{H}_2\text{O} + \text{HCl} \rightarrow \text{CH}_3\text{CH}_2\text{COOH} + \text{NH}_4\text{Cl}
\]

  • Reagent: alkali (e.g. NaOH)
  • Conditions: dilute & heat under reflux
  • It must be acidified to produce a carboxylic acid

\[
\text{CH}_3\text{CH}_2\text{CN} + 2\text{H}_2\text{O} + \text{NaOH} \rightarrow \text{CH}_3\text{CH}_2\text{COONa} + \text{NH}_3 \quad \text{(Alkaline hydrolysis)}
\]

\[
\text{CH}_3\text{CH}_2\text{COONa} + \text{HCl} \rightarrow \text{CH}_3\text{CH}_2\text{COOH} + \text{NaCl} \quad \text{(Acidification)}
\]

error: Content is protected.
Seraphinite AcceleratorOptimized by Seraphinite Accelerator
Turns on site high speed to be attractive for people and search engines.