...

16. Hydroxy compounds

Written by: Pranav I
Formatted by: Pranav I

Index

16.1 The homologous series of alcohols

  • Organic molecules containing the hydroxyl group, -OH
  • General formula: CnH2n+1OH
  • Naming: add ‘-ol’ to the alkane stem

Classifying alcohols

  • Primary alcohol: an alcohol in which the carbon atom bonded to the -OH group is attached to one alkyl group (or carbon atom)
  • Secondary alcohol: an alcohol in which the carbon atom bonded to the -OH group is attached to two alkyl groups (or carbon atoms)
  • Tertiary alcohol: an alcohol in which the carbon atom bonded to the -OH group is attached to three alkyl groups (or carbon atoms)

Properties of alcohols

  • Have higher boiling points than expected due to hydrogen bonding between alcohol molecules 
  • Soluble in water

Comparing the acidity of alcohols and water

  • Ethanol molecules have a very small degree of dissociation in water (position of equilibrium well over to the left)
  • The concentration of H+ ions is lower than that in water
  • Ethanol is a weaker acid than water
    • Electron-donating alkyl group bonded to O in the ethoxide ion
    • The positive inductive effect concentrates more negative charge in the oxygen atom
    • More readily accepts H+ while compared to OH

16.2 Reactions to make alcohols

 

#ReagentActs onReaction typeConditionsExample
1H2O(g)AlkenesAddition (electrophilic)Concentrated H3PO4 catalyst\[ \text{CH}_2=CH_2 + H_2O \rightarrow{\text{H}_3\text{PO}_4} \text{CH}_3\text{CH}_2\text{OH} \]
2KMnO4AlkenesOxidationCold, dilute & acidified\[ \text{C}_2\text{H}_4 + \text{H}_2\text{O} + [\text{O}] \rightarrow{} \text{HOCH}_2\text{CH}_2\text{OH} \]
3NaOHHaloalkanesSubstitution (nucleophilic)Aqueous & heat\[ \text{CH}_3\text{Br} + \text{NaOH (aq)} \rightarrow{\text{Heat}} \text{CH}_3\text{OH} + \text{NaBr} \]
4NaBH4AldehydesReductionAqueous\[ \text{CH}_3\text{CHO} + 2[\text{H}] \rightarrow{} \text{CH}_3\text{CH}_2\text{OH} \]
Ketones\[ \text{CH}_3\text{COCH}_3 + 2[\text{H}] \rightarrow{} \text{CH}_3\text{CH}(\text{OH})\text{CH}_3 \]
5LiAlH4AldehydesReductionDry ether\[ \text{CH}_3\text{CHO} + 2[\text{H}] \rightarrow{} \text{CH}_3\text{CH}_2\text{OH} \]
Ketones\[ \text{CH}_3\text{COCH}_3 + 2[\text{H}] \rightarrow{} \text{CH}_3\text{CH}(\text{OH})\text{CH}_3 \]
Carboxylic Acids\[ \text{CH}_3\text{COOH} + 4[\text{H}] \rightarrow{} \text{CH}_3\text{CH}_2\text{OH} + \text{H}_2\text{O} \]
6H2OEstersHydrolysisAcid, aqueous & heat\[ \text{CH}_3\text{COOCH}_3 + \text{H}_2\text{O} \rightarrow{\text{HCl}} \text{CH}_3\text{COOH} + \text{CH}_3\text{OH} \]
7NaOHEstersHydrolysisAqueous & heat\[ \text{CH}_3\text{COOCH}_3 + \text{NaOH (aq)} \rightarrow{} \text{CH}_3\text{COONa} + \text{CH}_3\text{OH} \]

16.3 Reactions of the alcohols

Combustion

  • React with excess oxygen in the air to form carbon dioxide and water
  • Ethanol burns with a clean blue flame

\[ \text{C}_2\text{H}_5\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O} \]

Substitution to form a haloalkane

  • Reagent: hydrogen halide → HX(g)
  • A halogen atom replaces -OH group in the alcohol → haloalkane produced
\[ \text{C}_2\text{H}_5\text{OH} + \text{HCl} \rightarrow \text{C}_2\text{H}_5\text{Cl} + \text{H}_2\text{O} \]

HX(g) can be made in situ (in the reaction vessel)

  1. Producing dry HCl gas: NaCl + conc. H2SO4 → HCl + NaHSO4
  2. Producing dry HBr gas: KBr + conc. H2SO4 → HBr + KHSO4

To understand these reactions better, refer to 11. Group 17 notes

  • The reactions listed below are other ways to produce haloalkanes from alcohols 
# Reagent Acts on Reaction type Conditions Example
1 SOCl2 Alcohols Substitution Room temperature \[ \text{CH}_3\text{CH}_2\text{OH} + \text{SOCl}_2 \rightarrow \text{CH}_3\text{CH}_2\text{Cl} + \text{SO}_2 + \text{HCl} \]
2 PCl5 Alcohols Substitution Room temperature \[ \text{CH}_3\text{CH}_2\text{OH} + \text{PCl}_5 \rightarrow \text{CH}_3\text{CH}_2\text{Cl} + \text{POCl}_3 + \text{HCl} \]
3 PCl3 Alcohols Substitution Heat \[ 3\text{CH}_3\text{CH}_2\text{OH} + \text{PCl}_3 \rightarrow 3\text{CH}_3\text{CH}_2\text{Cl} + \text{H}_3\text{PO}_3 \]
  • In Reaction #3, red phosphorus and Cl2/Br2/I2 are used to produce PCl3, PBr3 or PI3 in situ

Reaction with sodium metal

🚨 The -OH bond breaks in this reaction, not the C-O bond
  • Reagent: Na(s) → sodium
  • Less vigorous than sodium’s reaction with water (water is more acidic than alcohol)
    • The longer the hydrocarbon chain in the alcohol, the less vigorous the reaction with Na(s)
  • General reaction: sodium + alcohol → sodium alkoxide + hydrogen gas

\[
\text{C}_2\text{H}_5\text{OH} + 2\text{Na} \rightarrow \text{C}_2\text{H}_5\text{ONa} + \text{H}_2
\]

Esterification

 

#ReagentActs onReaction typeConditionsExample
1Carboxylic acidsAlcoholsCondensationConcentrated H2SO4 catalyst & heat under reflux\[
\text{CH}_3\text{COOH} + \text{C}_3\text{H}_7\text{OH} \rightarrow{\text{H}_2\text{SO}_4} \text{CH}_3\text{COOC}_3\text{H}_7 + \text{H}_2\text{O}
\]

Hydrolysis of esters

#ReagentActs onReaction typeConditionsExample
1HClEstersHydrolysisDilute & heat under reflux\[
\text{CH}_3\text{COOCH}_2\text{CH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{COOH} + \text{CH}_3\text{CH}_2\text{OH}
\]
2NaOHEstersHydrolysisHeat under reflux\[
\text{CH}_3\text{COOCH}_2\text{CH}_3 + \text{NaOH} \rightarrow \text{CH}_3\text{COONa} + \text{CH}_3\text{CH}_2\text{OH}
\]

Dehydration

  • Type: elimination
  • Conditions: (either of)
    • Al2O3 catalyst and heat
    • Concentrated acid
  • General reaction: alcohol → alkene + water

\[
\text{C}_2\text{H}_5\text{OH} \rightarrow{\text{conc. H}_2\text{SO}_4} \text{C}_2\text{H}_4 + \text{H}_2\text{O}
\]

Oxidation

  • Reagent: K2Cr2O7 → potassium dichromate(VI) solution
  • Conditions: acidified, heat, and reflux (or distill off)
  • Acidified K2Cr2O7 solution
    • Orange in colour due to dichromate(VI) ions, Cr2O72-(aq)
    • Acts as an oxidizing agent
    • Reduced to chromium(III) ions, Cr3+(aq) to form a green solution 
    • Note: the reaction mixture has to be warmed before the oxidation takes place
  • Primary, secondary, and tertiary alcohols behave differently in this reaction
  • Tertiary alcohols → solution remains orange when warmed (NO REACTION TAKES PLACE)
  • Secondary alcohols → oxidized to form a ketone + solution turns green

\[
\text{CH}_3\text{CH(OH)}\text{CH}_3 + [O] \rightarrow \text{CH}_3\text{CO}\text{CH}_3 + \text{H}_2\text{O}
\]

  • Primary alcohols → oxidized to form an aldehyde (by distilling off the product) + solution turns green

\[
\text{CH}_3\text{CH}_2\text{OH} + [O] \rightarrow \text{CH}_3\text{CHO} + \text{H}_2\text{O}
\]

  • Aldehydes can be further oxidized to form carboxylic acids (by refluxing with excess acidified K2Cr2O7)

\[
\text{CH}_3\text{CHO} + [O] \rightarrow \text{CH}_3\text{COOH}
\]

🔥 Using acidified KMnO4

  • Stronger oxidizing agent 
  • It can directly oxidize a primary alcohol to a carboxylic acid
  • It does not require heat in most cases
error: Content is protected.
Seraphinite AcceleratorOptimized by Seraphinite Accelerator
Turns on site high speed to be attractive for people and search engines.